FEATURES

Very low offset voltage: $\mathbf{1 0} \boldsymbol{\mu V}$ max over temperature Very low input offset voltage drift: $50 \mathrm{nV} /{ }^{\circ} \mathrm{C}$ max High CMRR: $\mathbf{9 6 ~ d B ~ m i n ~}$ Digitally programmable gain and output offset voltage Gain Range from 28 to 1300
Single-wire serial interface
Stable with any capacitive load
SOIC_N and LFCSP_VQ packages

APPLICATIONS

Automotive sensors

Pressure and position sensors
Precision current sensing
Thermocouple amplifiers
Industrial weigh scales
Strain gages
2.7 V to 5.5 V operation

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Rev.PrC

Information furnished by Analog Devices is believed to be accurate and reliable.

TABLE OF CONTENTS

Specifications. .4

Absolute Maximum Ratings....... Error! Bookmark not defined.
Thermal Resistance \qquad Error! Bookmark not defined.

ESD Caution. \qquad Error! Bookmark not defined.

Pin Configurations and Function Descriptions 7
Typical Performance Characteristics ... 8
Theory of Operation 10

Gain Values .. 11
Open Wire Fault Detection12
Shorted Wire Fault Detection. 12
Floating VPOS, VNEG, or VCLAMP Fault Detection 12
Device Programming 12
Outline Dimensions 17
Ordering Guide 17

REVISION HISTORY

XXXX—Revision 0: Initial Version

GENERAL DESCRIPTION

The AD8557 is a zero-drift, sensor signal amplifier with digitally programmable gain and output offset. Designed to easily and accurately convert variable pressure sensor and strain bridge outputs to a well-defined output voltage range, the AD8557 accurately amplifies many other differential or singleended sensor outputs. The AD8557 uses the ADI patented low noise auto-zero and DigiTrim ${ }^{\circ}$ technologies to create an incredibly accurate and flexible signal processing solution in a very compact footprint.

Gain is digitally programmable in a wide range from 28 to 1300 through a serial data interface. Gain adjustment can be fully simulated in-circuit and then permanently programmed with reliable polyfuse technology. Output offset voltage is also digitally programmable and is ratiometric to the supply voltage. When used in conjunction with an ADC referenced to the same supply, the system accuracy becomes immune to normal supply voltage variations. Output offset voltage can be adjusted with a resolution of better than 0.4% of the difference between VDD
and VSS. A lockout trim after gain and offset adjustment further ensures field reliability.

In addition to extremely low input offset voltage and input offset voltage drift and very high dc and ac CMRR, the AD8557 also includes a pull-up current source at the input pins and a pull-down current source at the VCLAMP pin. Output clamping set via an external reference voltage allows the AD8557 to drive lower voltage ADCs safely and accurately.

When used in conjunction with an ADC referenced to the same supply, the system accuracy becomes immune to normal supply voltage variations. Output offset voltage can be adjusted with a resolution of better than 0.4% of the difference between VDD and VSS. A lockout trim after gain and offset adjustment further ensures field reliability.

The AD8557 is fully specified from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$. Operating from single-supply voltages of 2.7 V to 5.5 V , the AD8557 is offered in the 8-lead SOIC_N, and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ 16-lead LFCSP_VQ.

SPECIFICATIONS

$\mathrm{VDD}=5.0 \mathrm{~V}, \mathrm{VSS}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=2.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=2.5 \mathrm{~V}$, Gain $=28, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 1. Electrical Specifications

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT STAGE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Linearity Differential Gain Accuracy Differential Gain Accuracy Differential Gain Temperature Coefficient	Vos TcVos I_{B} los CMRR	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & \\ & \mathrm{~V}_{\mathrm{CM}}=0.9 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=28 \\ & \mathrm{~V}_{\mathrm{CM}}=0.9 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1300 \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{O}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \\ & \text { Second stage gain }=10 \text { to } 70 \\ & \text { Second stage gain }=100 \text { to } 250 \\ & \text { Second stage gain }=10 \text { to } 250 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.8 \\ & 70 \\ & 96 \end{aligned}$	2 18 1 82 112 20 1000 15	$\begin{aligned} & 10 \\ & 50 \\ & 28 \\ & 8 \\ & 3.6 \\ & \\ & \\ & 1.6 \\ & 2.5 \\ & 40 \end{aligned}$	$\mu \mathrm{V}$ $n V /{ }^{\circ} \mathrm{C}$ nA nA V dB dB ppm ppm \% \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DAC Accuracy Ratiometricity Output Offset Temperature Coefficient		Offset codes $=8$ to 248 Offset codes $=8$ to 248 Offset codes $=8$ to 248		$\begin{aligned} & 0.7 \\ & 50 \\ & 5 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.8 \\ & \\ & 35 \\ & 80 \end{aligned}$	\% ppm mV ppm FS/ $/{ }^{\circ} \mathrm{C}$
VCLAMP Input Bias Current Input Voltage Range	ICLAMP		$\begin{aligned} & 100 \\ & 1.25 \end{aligned}$		$\begin{aligned} & 330 \\ & 2.64 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { V } \end{aligned}$
OUTPUT STAGE Short-Circuit Current Output Voltage, Low Output Voltage, High	$\begin{aligned} & \mathrm{ISC} \\ & \mathrm{IsC}_{\mathrm{sc}} \\ & \mathrm{VoL} \\ & \mathrm{~V}_{\mathrm{OH}} \end{aligned}$	Source Sink $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 5 \mathrm{~V} \\ & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 0 \mathrm{~V} \end{aligned}$	40 4.94	$\begin{aligned} & -40 \\ & 50 \end{aligned}$	$\begin{aligned} & -25 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{mV} \\ & \mathrm{~V} \end{aligned}$
POWER SUPPLY Supply Current Power Supply Rejection Ratio	ISY PSRR	$\begin{aligned} & \mathrm{V}_{\mathrm{o}}=2.5 \mathrm{~V}, \mathrm{VPOS}=\mathrm{VNEG}=2.5 \mathrm{~V}, \mathrm{VDAC} \text { code } \\ &=\mathrm{XXXX} \\ &-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	105	$\begin{aligned} & 1.8 \\ & 125 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~dB} \end{aligned}$
DYNAMIC PERFORMANCE Gain Bandwidth Product Settling Time	$\begin{aligned} & \text { GBP } \\ & \mathrm{t}_{\mathrm{s}} \end{aligned}$	First gain stage Second gain stage To $0.1 \%, 4 \mathrm{~V}$ output step		$\begin{aligned} & 8 \\ & 8 \end{aligned}$		MHz MHz $\mu \mathrm{s}$
NOISE PERFORMANCE Input Referred Noise Low Frequency Noise Total Harmonic Distortion	$\begin{aligned} & e_{n} p-p \\ & \text { THD } \end{aligned}$	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathbb{N}}=16.75 \mathrm{mV} \text { rms, } \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 32 \\ & 0.5 \\ & -100 \end{aligned}$		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p dB
DIGITAL INTERFACE Input Current DIGIN Pulse Width to Load 0 DIGIN Pulse Width to Load 1 Time Between Pulses at DIGIN DIGIN Low DIGIN High DIGOUT Logic 0	two tw ${ }_{1}$ tws		$\begin{aligned} & 0.05 \\ & 50 \\ & 10 \\ & 4 \end{aligned}$	2	10 1 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

Preliminary Technical Data

AD8557

Parameter	Symbol	Conditions	Min	Typ	Max
Unit					
DIGOUT Logic 1			4		

$\mathrm{VDD}=2.7 \mathrm{~V}, \mathrm{VSS}=0.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CM}}=1.35 \mathrm{~V}, \mathrm{~V}_{\mathrm{O}}=1.35 \mathrm{~V}$, Gain $=28, \mathrm{~T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise specified.
Table 2. Electrical Specifications

Parameter	Symbol	Conditions	Min	Typ	Max	Unit
INPUT STAGE Input Offset Voltage Input Offset Voltage Drift Input Bias Current Input Offset Current Input Voltage Range Common-Mode Rejection Ratio Linearity Differential Gain Accuracy Differential Gain Temperature Coefficient	Vos Tc Vos I_{B} los CMRR	$\begin{aligned} & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \\ & -40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$ $\begin{aligned} & \mathrm{V}_{\mathrm{CM}}=0.9 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=28 \\ & \mathrm{~V}_{\mathrm{CM}}=0.9 \mathrm{~V} \text { to } 3.6 \mathrm{~V}, \mathrm{~A}_{\mathrm{V}}=1300 \\ & \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{~V} \text { to } 3.4 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{o}}=0.2 \mathrm{~V} \text { to } 4.8 \mathrm{~V} \end{aligned}$ Second stage gain $=10$ to 250 Second stage gain $=10$ to 250	$\begin{aligned} & 8 \\ & 0.5 \\ & 70 \\ & 96 \end{aligned}$		$\begin{aligned} & 10 \\ & 50 \\ & 28 \\ & 1 \\ & 1.6 \\ & \\ & \\ & 1.6 \\ & 40 \\ & \hline \end{aligned}$	$\mu \mathrm{V}$ $\mathrm{nV} /{ }^{\circ} \mathrm{C}$ nA nA V dB dB ppm ppm \% $\mathrm{ppm} /{ }^{\circ} \mathrm{C}$
DAC Accuracy Ratiometricity Output Offset Temperature Coefficient		Offset codes $=8$ to 248 Offset codes $=8$ to 248 Offset codes $=8$ to 248		$\begin{aligned} & 0.7 \\ & 50 \\ & 5 \\ & 20 \end{aligned}$	$\begin{aligned} & 0.8 \\ & 35 \\ & 80 \end{aligned}$	\% ppm mV ppm FS/ $/{ }^{\circ} \mathrm{C}$
VCLAMP Input Bias Current Input Voltage Range	ICLAMP		$\begin{aligned} & 100 \\ & 1.25 \end{aligned}$	166	$\begin{aligned} & 330 \\ & 2.64 \end{aligned}$	$\begin{aligned} & \text { nA } \\ & \text { V } \end{aligned}$
OUTPUT STAGE Short-Circuit Current Output Voltage, Low Output Voltage, High	Isc VoL Vон	Source Sink $\begin{aligned} & \mathrm{R}_{\mathrm{L}}=10 \mathrm{k} \Omega \text { to } 5 \mathrm{~V} \\ & \mathrm{R} \mathrm{~L}=10 \mathrm{k} \Omega \text { to } 0 \mathrm{~V} \end{aligned}$	15 2.64	$\begin{aligned} & -12 \\ & 20 \end{aligned}$	$\begin{aligned} & -7 \\ & 30 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \\ & \mathrm{mV} \\ & \mathrm{~V} \end{aligned}$
POWER SUPPLY Supply Current Power Supply Rejection Ratio	Isy PSRR	$\begin{aligned} & \mathrm{V}=2.5 \mathrm{~V}, \mathrm{VPOS}=\mathrm{VNEG}=2.5 \mathrm{~V}, \mathrm{VDAC} \text { code } \\ &=\mathrm{XXXX} \\ &-40^{\circ} \mathrm{C} \leq \mathrm{T}_{\mathrm{A}} \leq+125^{\circ} \mathrm{C} \end{aligned}$	105	$\begin{aligned} & 1.8 \\ & 125 \end{aligned}$		$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~dB} \end{aligned}$
DYNAMIC PERFORMANCE Gain Bandwidth Product Settling Time	$\begin{aligned} & \text { GBP } \\ & \mathrm{t}_{\mathrm{s}} \end{aligned}$	First gain stage Second gain stage To 0.1\%, 4 V output step		$\begin{aligned} & 2 \\ & 8 \\ & 8 \end{aligned}$		MHz MHz $\mu \mathrm{s}$
NOISE PERFORMANCE Input Referred Noise Low Frequency Noise Total Harmonic Distortion	$\begin{aligned} & e_{n} p-p \\ & \text { THD } \end{aligned}$	$\begin{aligned} & f=1 \mathrm{kHz} \\ & \mathrm{f}=0.1 \mathrm{~Hz} \text { to } 10 \mathrm{~Hz} \\ & \mathrm{~V}_{\mathbb{N}}=16.75 \mathrm{mV} \mathrm{rms}, \mathrm{f}=1 \mathrm{kHz} \end{aligned}$		$\begin{aligned} & 32 \\ & 0.5 \\ & -100 \\ & \hline \end{aligned}$		$\mathrm{nV} / \sqrt{ } \mathrm{Hz}$ $\mu \mathrm{V}$ p-p dB
DIGITAL INTERFACE Input Current DIGIN Pulse Width to Load 0 DIGIN Pulse Width to Load 1 Time Between Pulses at DIGIN DIGIN Low DIGIN High DIGOUT Logic 0 DIGOUT Logic 1	two tw ${ }_{1}$ tWs		$\begin{aligned} & 0.05 \\ & 50 \\ & 10 \\ & 4 \\ & 4 \end{aligned}$	2	10 1 1	$\begin{aligned} & \mu \mathrm{A} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mu \mathrm{~s} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \\ & \mathrm{~V} \end{aligned}$

ABSOLUTE MAXIMUM RATINGS

Table 2.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	VSS -0.3 V to VDD +0.3 V
Differential Input Voltage ${ }^{1}$	$\pm 5.0 \mathrm{~V}$
Output Short-Circuit Duration to	Indefinite
VSS or VDD	
ESD (Human Body Model)	2000 V
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Operating Temperature Range	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Junction Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Lead Temperature Range	$300^{\circ} \mathrm{C}$

${ }^{1}$ Differential input voltage is limited to $\pm 5.0 \mathrm{~V}$ or \pm the supply voltage, whichever is less.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

$\theta_{\text {JA }}$ is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.
Table 3. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathbf{J A}}{ }^{\mathbf{1}}$	$\boldsymbol{\theta}_{\mathbf{\prime}}$	Unit
8-Lead SOIC_N (R)	158	43	${ }^{\circ} \mathrm{C} / \mathrm{W}$
16-Lead LFCSP_VQ (CP)	44	31.5	${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1} \theta_{\mathrm{JA}}$ is specified for the worst-case conditions, that is, θ_{JA} is specified for device soldered in circuit board for LFCSP_VQ package.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although this product features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

WARNING!
 Tivinition
 ESD SENSITIVE DEVICE

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 2. 8-Lead SOIC_N Pin Configuration

Figure 3. 16-Lead LFCSP_VQ Pin Configuration

Table 4. Pin Function Descriptions

Pin No.			
SOIC_N	LFCSP_VQ	Mnemonic	Description
1		VDD	Positive Supply Voltage.
2	2	DIGOUT	In read mode this pin functions as a digital output.
3	4	DIGIN	Digital Input.
4	6	VNEG	Negative Amplifier Input (Inverting Input).
5	8	VPOS	Positive Amplifier Input (Noninverting Input).
6	10	VCLAMP	Set Clamp Voltage at Output.
7	12	VOUT	Amplifier Output.
8		VSS	Negative Supply Voltage.
	13,14	DVSS, AVSS	Negative Supply Voltage.
	15,16	DVDD, AVDD	Positive Supply Voltage.
	$1,3,5,7,9,11$	NC	Do Not Connect.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 4. Input Offset Voltage Distribution

Figure 5. Input Offset Voltage vs. Common-Mode Voltage

Figure 6. Input Offset Voltage vs. Temperature

Figure 7. $T_{C} V_{o s}$ at $V_{S Y}=5 \mathrm{~V}$

Figure 8. Output Buffer Offset vs. Temperature

Figure 9. Input Bias Current at VPOS, VNEG vs. Temperature

Figure 10. Input Bias Current at VPOS, VNEG vs. Common-Mode Voltage

Figure 11. Input Offset Current vs. Temperature

Figure 12. Digital Input Current vs. Digital Input Voltage (Pin 4)

Figure 13. VCLAMP Current over Temperature at $V_{s}=5 \mathrm{~V}$ vs. VCLAMP Voltage

Figure 14. Supply Current (Isr) vs. Supply Voltage

Figure 15. Supply Current ($I_{\text {sy }}$) vs. Temperature

Figure 16. CMRR vs. Frequency

Figure 17. CMRR vs. Frequency

Figure 18. CMRR vs. Temperature at Different Gains

Figure 19. Input Voltage Noise Density vs. Frequency (0 Hz to 10 kHz)

Figure 21. Low Frequency Input Voltage Noise (0.1 Hz to 10 Hz)

Figure 22. Low Frequency Input Voltage Noise (0.1 Hz to 10 Hz)

Figure 23. Closed-Loop Gain vs. Frequency Measured at Filter Pin

Figure 24. Closed-Loop Gain vs. Frequency Measured at Output Pin

Figure 25. Output Buffer Gain vs. Frequency

Figure 26. Output Buffer Positive Overshoot

Figure 27. Output Buffer Negative Overshoot

Figure 28. Output Voltage to Supply Rail vs. Load Current

Figure 29. Output Short-Circuit vs. Temperature

Figure 30. Power-On Response at $25^{\circ} \mathrm{C}$

Figure 31. Power-On Response at $125^{\circ} \mathrm{C}$

Figure 32. Power-On Response at $-40^{\circ} \mathrm{C}$

Figure 33. PSRR vs. Temperature

Figure 34. PSRR vs. Frequency

Figure 35. Small Signal Response

Figure 36. Small Signal Response

Figure 37. Large Signal Response
Figure 43. Positive Overload Recovery (Gain = 1280)

Figure 38. Large Signal Response
Figure 44. Settling Time 0.1\%

Figure 39. Output Impedance vs. Frequency

Figure 40. Negative Overload Recovery (Gain = 70)

Figure 41. Positive Overload Recovery $($ Gain $=70)$

Figure 42. Negative Overload Recovery (Gain = 1280)

THEORY OF OPERATION

A1, A2, R1, R2, R3, P1, and P2 form the first gain stage of the differential amplifier. A1 and A2 are auto-zeroed op amps that minimize input offset errors. P1 and P2 are digital potentiometers, guaranteed to be monotonic. Programming P1 and P2 allows the first stage gain to be varied from 2.8 to 5.2 with 7 -bit resolution (see Table 5 and Equation 1), giving a fine gain adjustment resolution of 0.37%. R1, R2, R3, P1, and P2 each have a similar temperature coefficient, so the first stage gain temperature coefficient is lower than $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$.

$$
\begin{equation*}
\text { GAIN1 } \approx 2.8 \times\left(\frac{5.2}{2.8}\right)^{\left(\frac{\text { Code }}{127}\right)} \tag{1}
\end{equation*}
$$

A3, R4, R5, R6, R7, P3, and P4 form the second gain stage of the differential amplifier. A3 is an auto-zeroed op amp that minimizes input offset errors and also includes an output buffer. P3 and P4 are digital potentiometers, which allow the second stage gain to be varied from 10 to 250 in eight steps (see Table 6). R4, R5, R6, R7, P3, and P4 each have a similar temperature coefficient, so the second stage gain temperature coefficient is lower than $100 \mathrm{ppm} /{ }^{\circ} \mathrm{C}$. The output stage of A3 is supplied from a buffered version of VCLAMP instead of VDD, allowing the positive swing to be limited.

A4 implements a voltage buffer, which provides the positive supply to the output stage of A3. Its function is to limit VOUT to a maximum value, useful for driving analog-to-digital converters (ADC) operating on supply voltages lower than

VDD. The input to A4, VCLAMP, has a very high input resistance. It should be connected to a known voltage and not left floating. However, the high input impedance allows the clamp voltage to be set using a high impedance source, such as, a potential divider. If the maximum value of VOUT does not need to be limited, VCLAMP should be connected to VDD.

An 8-bit digital-to-analog converter (DAC) is used to generate a variable offset for the amplifier output. This DAC is guaranteed to be monotonic. To preserve the ratiometric nature of the input signal, the DAC references are driven from VSS and VDD, and the DAC output can swing from VSS (Code 0) to VDD (Code 255). The 8 -bit resolution is equivalent to 0.39% of the difference between VDD and VSS, for example, 19.5 mV with a 5 V supply. The DAC output voltage (VDAC) is given approximately by

$$
\begin{equation*}
V D A C \approx\left(\frac{C o d e+0.5}{256}\right)(V D D-V S S)+V S S \tag{2}
\end{equation*}
$$

Where the temperature coefficient of VDAC is lower than 200 ppm $/{ }^{\circ} \mathrm{C}$.

The amplifier output voltage (VOUT) is given by

$$
\begin{equation*}
V O U T=G A I N(V P O S-V N E G)+V D A C \tag{3}
\end{equation*}
$$

where GAIN is the product of the first and second stage gains.

\{insert picture\}
Figure 47. Functional Schematic

GAIN VALUES

Table 5. First Stage Gain vs. First Stage Gain Code

First Stage Gain Code	First Stage Gain	First Stage Gain Code	First Stage Gain	First Stage Gain Code	First Stage Gain	First Stage Gain Code	First Stage Gain
0		32		64		96	
1		33		65		97	
2		34		66		98	
3		35		67		99	
4		36		68		100	
5		37		69		101	
6		38		70		102	
7		39		71		103	
8		40		72		104	
9		41		73		105	
10		42		74		106	
11		43		75		107	
12		44		76		108	
13		45		77		109	
14		46		78		110	
15		47		79		111	
16		48		80		112	
17		49		81		113	
18		50		82		114	
19		51		83		115	
20		52		84		116	
21		53		85		117	
22		54		86		118	
23		55		87		119	
24		56		88		120	
25		57		89		121	
26		58		90		122	
27		59		91		123	
28		60		92		124	
29		61		93		125	
30		62		94		126	
31		63		95		127	

Table 6. Second Stage Gain and Gain Ranges vs. Second Stage Gain Code

Second Stage Gain Code	Second Stage Gain	Minimum Combined Gain	Maximum Combined Gain
0			
1			
2			
3			
4			
5			
6			

AD8557

OPEN WIRE FAULT DETECTION

The inputs to A1 and A2, VNEG and VPOS, each have a comparator to detect whether VNEG or VPOS exceeds a threshold voltage, nominally VDD - 2.0 V. If (VNEG > VDD -2.0 V) or (VPOS $>$ VDD -2.0 V), VOUT is clamped to VSS. The output current limit circuit is disabled in this mode, but the maximum sink current is approximately 10 mA when VDD $=5 \mathrm{~V}$. The inputs to A1 and A2, VNEG and VPOS, are also pulled up to VDD by currents IP1 and IP2. These are both nominally 49 nA and matched to within 3 nA . If the inputs to A 1 or A 2 are accidentally left floating, as with an open wire fault, IP1 and IP2 pull them to VDD which would cause VOUT to swing to VSS, allowing this fault to be detected. It is not possible to disable IP1 and IP2, nor the clamping of VOUT to VSS, when VNEG or VPOS approaches VDD.

SHORTED WIRE FAULT DETECTION

The AD8557 provides fault detection in the case where VPOS, VNEG, or VCLAMP shorts to VDD and VSS. Figure 48 shows the voltage regions at VPOS, VNEG, and VCLAMP that trigger an error condition. When an error condition occurs, the VOUT pin is shorted to VSS. Table 7 lists the voltage levels shown in Figure 48.

Figure 48. Voltage Regions at VPOS, VNEG, and VCLAMP that Trigger a Fault Condition

Table 7. Typical VINL, VINH, and VCLL Values (VDD $=5 \mathrm{~V}$)

Voltage	Min (V)	Max (V)	VOUT Condition
VINH	3.9	4.2	Short to VSS fault detection
VINL	0.195	0.55	Short to VSS fault detection
VCLL	1.0	1.2	Short to VSS fault detection

FLOATING VPOS, VNEG, OR VCLAMP FAULT DETECTION

A floating fault condition at the VPOS, VNEG, or VCLAMP pins is detected by using a low current to pull a floating input into an error voltage range, defined in the previous section. In this way, the VOUT pin is shorted to VSS when a floating input is detected. Table 8 lists the currents used.

Table 8. Floating Fault Detection at VPOS, VNEG, and VCLAMP

Pin	Typical Current	Goal of Current
VPOS	16 nA pull-up	Pull VPOS above VINH
VNEG	16 nA pull-up	Pull VNEG above VINH
VCLAMP	0.2μ p pull-down	Pull VCLAMP below VCLL

DEVICE PROGRAMMING

Digital Interface

The digital interface allows the first stage gain, second stage gain, and output offset to be adjusted and allows desired values for these parameters to be permanently stored by selectively blowing polysilicon fuses. To minimize pin count and board space, a single-wire digital interface is used. The digital input pin, DIGIN, has hysteresis to minimize the possibility of inadvertent triggering with slow signals. It also has a pull-down current sink to allow it to be left floating when programming is not being performed. The pull-down ensures inactive status of the digital input by forcing a dc low voltage on DIGIN.

A short pulse at DIGIN from low to high and back to low again, such as between 50 ns and $10 \mu \mathrm{~s}$ long, loads a 0 into a shift register. A long pulse at DIGIN, such as 50μ s or longer, loads a 1 into the shift register. The time between pulses should be at least $10 \mu \mathrm{~s}$. Assuming VSS $=0 \mathrm{~V}$, voltages at DIGIN between VSS and $0.2 \times$ VDD are recognized as a low, and voltages at DIGIN between $0.8 \times$ VDD and VDD are recognized as a high. A timing diagram example, Figure 49, shows the waveform for entering code 010011 into the shift register.

Figure 49. Timing Diagram for Code 010011

Table 9. Timing Specifications

Timing Parameter	Description	Specification
$\mathrm{t}_{\mathrm{w} 0}$	Pulse Width for Loading 0 into Shift Register	Between 50 ns and $10 \mu \mathrm{~s}$
$\mathrm{t}_{\mathrm{w} 1}$	Pulse Width for Loading 1 into Shift Register	$\geq 50 \mu \mathrm{~s}$
t_{ws}	Width Between Pulses	$\geq 10 \mu \mathrm{~s}$

Table 10. 38-Bit Serial Word Format

Field No.	Bits	Description
0	0 to 11	12-Bit Start of Packet 100000000001
1	12 to 13	2-Bit Function 00: Change Sense Current 01: Simulate Parameter Value 10: Program Parameter Value 11: Read Parameter Value
2	14 to 15	2-Bit Parameter 00: Second Stage Gain Code 01: First Stage Gain Code 10: Output Offset Code 11: Other Functions
3	16 to 17	2-Bit Dummy 10
4	18 to 25	8-Bit Value Parameter 00 (Second Stage Gain Code): 3 LSBs Used Parameter 01 (First Stage Gain Code): 7 LSBs Used Parameter 10 (Output Offset Code): All 8 Bits Used Parameter 11 (Other Functions) Bit 0 (LSB): Master Fuse Bit 1: Fuse for Production Test at Analog Devices
5	26 to 37	12-Bit End of Packet 011111111110

A 38-bit serial word is used, divided into 6 fields. Assuming each bit can be loaded in $60 \mu \mathrm{~s}$, the 38 -bit serial word transfers in 2.3 ms . Table 10 summarizes the word format.

Field 0 and Field 5 are the start-of-packet field and end-ofpacket field, respectively. Matching the start-of-packet field with 100000000001 and the end-of-packet field with 01111111 1110 ensures that the serial word is valid and enables decoding of the other fields.

Field 3 breaks up the data and ensures that no data combination can inadvertently trigger the start-of-packet and end-of-packet fields. Field 0 should be written first and Field 5 written last.

Within each field, the MSB must be written first and the LSB written last. The shift register features power-on reset to minimize the risk of inadvertent programming; power-on reset occurs when VDD is between 0.7 V and 2.2 V .

Initial State

Initially, all the polysilicon fuses are intact. Each parameter has the value 0 assigned (see Table 11).

Table 11. Initial State Before Programming

Second Stage Gain Code $=\mathbf{0}$	Second Stage Gain $=\mathbf{1 7 . 5}$
First stage gain code $=0$	First stage gain $=4.0$
Output offset code $=0$	Output offset $=$ VSS
Master fuse $=0$	Master fuse not blown

When power is applied to a device, parameter values are taken either from internal registers, if the master fuse is not blown, or from the polysilicon fuses, if the master fuse is blown. Programmed values have no effect until the master fuse is blown. The internal registers feature power-on reset, so the unprogrammed devices enter a known state after power-up. Power-on reset occurs when VDD is between 0.7 V and 2.2 V .

Simulation Mode

The simulation mode allows any parameter to be temporarily changed. These changes are retained until the simulated value is reprogrammed, the power is removed, or the master fuse is blown. Parameters are simulated by setting Field 1 to 01, selecting the desired parameter in Field 2, and the desired value for the parameter in Field 4. Note that a value of 11 for Field 2 is ignored during the simulation mode. Examples of temporary settings follow:

- Setting the second stage gain code (Parameter 00) to 011 and the second stage gain to 50 produces:
10000000000101001000000011011111111110
- Setting the first stage gain code (Parameter 01) to 0001011 and the first stage gain to 4.166 produces:
10000000000101011000001011011111111110
A first stage gain of 4.166 with a second stage gain of 50 gives a total gain of 208.3. This gain has a maximum tolerance of 2.5%.
- Set the output offset code (Parameter 10) to 01000000 and the output offset to 1.260 V when VDD $=5 \mathrm{~V}$ and VSS $=0 \mathrm{~V}$. This output offset has a maximum tolerance of 0.8% : 10000000000101101001000000011111111110

Programming Mode

Intact fuses give a bit value of 0 . Bits with a desired value of 1 need to have the associated fuse blown. Since a relatively large current is needed to blow a fuse, only one fuse can be reliably blown at a time. Thus, a given parameter value may need several 38 -bit words to allow reliable programming. A 5.25 V ($\pm 0.25 \mathrm{~V}$) supply is required when blowing fuses to minimize the on resistance of the internal MOS switches that blow the fuse. The power supply voltage must not exceed the absolute maximum rating and must be able to deliver 250 mA of current.

At least $10 \mu \mathrm{~F}$ (tantalum type) of decoupling capacitance is needed across the power pins of the device during programming. The capacitance can be on the programming apparatus as long as it is within 2 inches of the device being programmed. An additional $0.1 \mu \mathrm{~F}$ (ceramic type) in parallel with the $10 \mu \mathrm{~F}$ is recommended within $1 / 2$ inch of the device being programmed. A minimum period of 1 ms should be allowed for each fuse to blow. There is no need to measure the supply current during programming.

The best way to verify correct programming is to use the read mode to read back the programmed values. Then, remeasure the gain and offset to verify these values. Programmed fuses have no effect on the gain and output offset until the master fuse is blown. After blowing the master fuse, the gain and output offset are determined solely by the blown fuses, and the simulation mode is permanently deactivated.

Parameters are programmed by setting Field 1 to 10 , selecting the desired parameter in Field 2, and selecting a single bit with the value 1 in Field 4.

As an example, suppose the user wants to permanently set the second stage gain to 50 . Parameter 00 needs to have the value 00000011 assigned. Two bits have the value 1 , so two fuses need to be blown. Since only one fuse can be blown at a time, this code can be used to blow one fuse:
10000000000110001000000010011111111110
The MOS switch that blows the fuse closes when the complete packet is recognized, and opens when the start-of-packet, dummy, or end-of-packet fields are no longer valid. After 1 ms , this second code is entered to blow the second fuse: 10000000000110001000000001011111111110

To permanently set the first stage gain to a nominal value of 4.151, Parameter 01 needs to have the value 0001011 assigned. Three fuses need to be blown, and the following codes are used, with a 1 ms delay after each code:
10000000000110011000001000011111111110
10000000000110011000000010011111111110
10000000000110011000000001011111111110
To permanently set the output offset to a nominal value of 1.260 V when VDD $=5 \mathrm{~V}$ and VSS $=0 \mathrm{~V}$, Parameter 10 needs to have the value 01000000 assigned. If one fuse needs to be blown, use the following code:
10000000000110101001000000011111111110
Finally, to blow the master fuse to deactivate the simulation mode and prevent further programming, use code: 10000000000110111000000001011111111110

There are a total of 20 programmable fuses. Since each fuse requires 1 ms to blow, and each serial word can be loaded in 2.3
ms , the maximum time needed to program the fuses can be as low as 66 ms .

Read Mode

The values stored by the polysilicon fuses can be sent to the FILT/DIGOUT pin to verify correct programming. Normally, the FILT/DIGOUT pin is only connected to the second gain stage output via RF. During read mode, however, the FILT/DIGOUT pin is also connected to the output of a shift register to allow the polysilicon fuse contents to be read. Since VOUT is a buffered version of FILT/DIGOUT, VOUT also outputs a digital signal during read mode.

Read mode is entered by setting Field 1 to 11 and selecting the desired parameter in Field 2. Field 4 is ignored. The parameter value, stored in the polysilicon fuses, is loaded into an internal shift register, and the MSB of the shift register is connected to the FILT/DIGOUT pin. Pulses at DIGIN shift out the shift register contents to the FILT/DIGOUT pin, allowing the 8-bit parameter value to be read after seven additional pulses; shifting occurs on the falling edge of DIGIN. An eighth pulse at DIGIN disconnects FILT/DIGOUT from the shift register and terminates the read mode. If a parameter value is less than eight bits long, the MSBs of the shift register are padded with 0s.

For example, to read the second stage gain, this code is used: 10000000000111001000000000011111111110
Since the second stage gain parameter value is only three bits long, the FILT/DIGOUT pin has a value of 0 when this code is entered, and remains 0 during four additional pulses at DIGIN. The fifth, sixth, and seventh pulses at DIGIN return the 3-bit value at FILT/DIGOUT, the seventh pulse returns the LSB. An eighth pulse at DIGIN terminates the read mode.

Sense Current

A sense current is sent across each polysilicon fuse to determine whether it has been blown. When the voltage across the fuse is less than approximately 1.5 V , the fuse is considered not blown, and Logic 0 is output from the OTP cell. When the voltage across the fuse is greater than approximately 1.5 V , the fuse is considered blown, and Logic 1 is output.

When the AD8557 is manufactured, all fuses have a low resistance. When a sense current is sent through the fuse, a voltage less than 0.1 V is developed across the fuse. This is much lower than 1.5 V , so Logic 0 is output from the OTP cell. When a fuse is electrically blown, it should have a very high resistance. When the sense current is applied to the blown fuse, the voltage across the fuse should be larger than 1.5 V , so Logic 1 is output from the OTP cell.

It is theoretically possible, though very unlikely, for a fuse to be incompletely blown during programming, assuming the required conditions are met. In this situation, the fuse could have a medium resistance, neither low nor high, and a voltage of
approximately 1.5 V could be developed across the fuse. Thus, the OTP cell could output Logic 0 or a Logic 1, depending on temperature, supply voltage, and other variables.

To detect this undesirable situation, the sense current can be lowered by a factor of 4 using a specific code. The voltage developed across the fuse would then change from 1.5 V to 0.38 V , and the output of the OTP would be a Logic 0 instead of the expected Logic 1 from a blown fuse. Correctly blown fuses would still output a Logic 1. In this way, incorrectly blown fuses can be detected. Another specific code would return the sense current to the normal (larger) value. The sense current cannot be permanently programmed to the low value. When the AD8557 is powered up, the sense current defaults to the high value.

The low sense current code is:
100000000001000010 XXXX XXX1 011111111110
The normal (high) sense current code is:
100000000001000010 XXXX XXX0 011111111110

Programming Procedure

For reliable fuse programming, it is imperative to follow the programming procedure requirements, especially the proper supply voltage during programming.

1. When programming the AD 8557 , the temperature of the device must be between $10^{\circ} \mathrm{C}$ to $40^{\circ} \mathrm{C}$.
2. Set VDD and VSS to the desired values in the application. Use simulation mode to test and determine the desired codes for the second stage gain, first stage gain, and output offset. The nominal values for these parameters are shown in Table 5, Table 6, Equation 2, and Equation 3; use the codes corresponding to these values as a starting point. However, since actual parameter values for given codes vary from device to device, some fine tuning is necessary for the best possible accuracy.

One way to choose these values is to set the output offset to an approximate value, such as Code 128 for midsupply, to allow the required gain to be determined. Then set the second stage gain so the minimum first stage gain (Code 0) gives a lower gain than required, and the maximum first stage gain (Code 127) gives a higher gain than required. After choosing the second stage gain, the first stage gain can be chosen to fine tune the total gain. Finally, the output offset can be adjusted to give the desired value. After determining the desired codes for second stage gain, first stage gain, and output offset, the device is ready for permanent programming.

Important: Once a programming attempt has been made for any fuse, there should be no further attempt to blow that fuse. If a fuse does not program to the expected state, discard
the unit. The expected incidence rate of attempted but unblown fuses is very small when following the proper programming procedure and conditions.
3. Set VSS to 0 V and VDD to $5.25 \mathrm{~V}(\pm 0.25 \mathrm{~V})$. Power supplies should be capable of supplying 250 mA at the required voltage and properly bypassed as described in the Programming Mode section. Use program mode to permanently enter the desired codes for the first stage gain, second stage gain, and output offset. Blow the master fuse to allow the AD8557 to read data from the fuses and to prevent further programming.
4. Set VDD and VSS to the desired values in the application. Use read mode with low sense current followed by high sense current to verify programmed codes.
5. Measure gain and offset to verify correct functionality.

Determining Optimal Gain and Offset Codes

First, determine the desired gain:

1. Determine the desired gain, G_{A} (using the measurements obtained from the simulation).
2. Use Table 6 to determine G_{2}, the second stage gain, such that $(4.00 \times 1.04)<\left(\mathrm{G}_{\mathrm{A}} / \mathrm{G}_{2}\right)<(6.4 / 1.04)$. This ensures the first and last codes for the first stage gain are not used, thereby allowing enough first stage gain codes within each second stage gain range to adjust for the 3% accuracy.

Next, set the second stage gain:

1. Use the simulation mode to set the second stage gain to G_{2}.
2. Set the output offset to allow the AD8557 gain to be measured, for example, use Code 128 to set it to midsupply.
3. Use Table 5 or Equation 1 to set the first stage gain code $\mathrm{C}_{\mathrm{G} 1}$, so the first stage gain is nominally $\mathrm{G}_{A} / \mathrm{G}_{2}$.
4. Measure the resulting gain $\left(\mathrm{G}_{\mathrm{B}}\right)$. G_{B} should be within 3% of G_{A}.
5. Calculate the first stage gain error (in relative terms) $\mathrm{E}_{\mathrm{G} 1}=\mathrm{G}_{\mathrm{B}} / \mathrm{G}_{\mathrm{A}}-1$.
6. Calculate the error (in the number of the first stage gain codes) $\mathrm{C}_{\mathrm{EG} 1}=\mathrm{E}_{\mathrm{G} 1} / 0.00370$.
7. Set the first stage gain code to $\mathrm{C}_{\mathrm{G} 1}-\mathrm{C}_{\mathrm{EG} 1}$.
8. Measure the gain $\left(\mathrm{G}_{\mathrm{C}}\right)$. G_{C} should be closer to G_{A} than to G_{B}.
9. Calculate the error (in relative terms) $\mathrm{E}_{\mathrm{G} 2}=\mathrm{G}_{\mathrm{C}} / \mathrm{G}_{\mathrm{A}}-1$.
10. Calculate the error (in the number of the first stage gain codes) $\mathrm{C}_{\mathrm{EG} 2}=\mathrm{E}_{\mathrm{G} 2} / 0.00370$.
11. Set the first stage gain code to $C_{G 1}-C_{E G 1}-C_{E G 2}$. The resulting gain should be within one code of G_{A}.

Finally, determine the desired output offset:

1. Determine the desired output offset O_{A} (using the measurements obtained from the simulation).
2. Use Equation 2 to set the output offset code Cor such that the output offset is nominally O_{A}.
3. Measure the output offset $\left(\mathrm{O}_{\mathrm{B}}\right), \mathrm{O}_{B}$ should be within 3% of O_{A}.
4. Calculate the error (in relative terms) $\mathrm{E}_{\mathrm{O}}=\mathrm{O}_{\mathrm{B}} / \mathrm{O}_{\mathrm{A}}-1$.
5. Calculate the error (in the number of the output offset codes) $\mathrm{C}_{\mathrm{EO}}=\mathrm{EOL}_{1} / 0.00392$.
6. Set the output offset code to $\mathrm{Col}_{1}-\mathrm{C}_{\text {हоо }}$.
7. Measure the output offset $\left(\mathrm{O}_{\mathrm{C}}\right)$. O_{C} should be closer to O_{A} than to O_{B}.
8. Calculate the error (in relative terms) $\mathrm{E}_{\mathrm{O} 2}=\mathrm{O}_{\mathrm{C}} / \mathrm{O}_{\mathrm{A}}-1$.
9. Calculate the error (in the number of the output offset codes) $\mathrm{C}_{\mathrm{EO} 2}=\mathrm{E}_{\mathrm{O} 2} / 0.00392$.
10. Set the output offset code to $\mathrm{C}_{\mathrm{ol}}-\mathrm{C}_{\mathrm{EO}}-\mathrm{C}_{\mathrm{EO} 2}$. The resulting offset should be within one code of O_{A}.

OUTLINE DIMENSIONS

Figure 50. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body
($R-8$)
Dimensions shown in millimeters and (inches)

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
AD8557AR	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC	$\mathrm{R}-8$
AD8557AR-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC	R-8
AD8557AR-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	8 -Lead SOIC	R-8
AD8557AR-EVAL		Evaluation Board	
AD8557ACP-R2	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead LFCSP	$\mathrm{CP}-16$
AD8557ACP-REEL	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead LFCSP	$\mathrm{CP}-16$
AD8557ACP-REEL7	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	16 -Lead LFCSP	$\mathrm{CP}-16$

NOTES

NOTES

